ASP (ACTIVATED SLUDGE PROCESS)

The activated sludge process is a type of biological wastewater treatment process for treating sewage or industrial wastewaters using aeration and a biological floc composed of bacteria and protozoa. It uses air (or oxygen) and microorganisms to biologically oxidize organic pollutants, producing a waste sludge (or floc) containing the oxidized material.

The activated sludge process for removing carbonaceous pollution begins with an aeration tank where air (or oxygen) is injected into the waste water. This is followed by a settling tank to allow the biological flocs (the sludge blanket) to settle, thus separating the biological sludge from the clear treated water. Part of the waste sludge is recycled to the aeration tank and the remaining waste sludge is removed for further treatment and ultimate disposal.

Process description

The process takes advantage of aerobic micro-organisms that can digest organic matter in sewage, and clump together by flocculation entrapping fine particulate matter as they do so. It thereby produces a liquid that is relatively free from suspended solids and organic material, and flocculated particles that will readily settle out and can be removed.

The general arrangement of an activated sludge process for removing carbonaceous pollution includes the following items:

  • Aeration tank where air (or oxygen) is injected in the mixed liquor.
  • Settling tank (usually referred to as "final clarifier" or "secondary settling tank") to allow the biological flocs (the sludge blanket) to settle, thus separating the biological sludge from the clear treated water.
  • Treatment of nitrogenous or phosphorous matter comprises the addition of an anoxic compartment inside the aeration tank in order to perform the nitrification-denitrification process more efficiently. First, ammonia is oxidized to nitrite, which is then converted into nitrate in aerobic conditions (aeration compartment).
  • Facultative bacteria then reduce the nitrate to nitrogen gas in anoxic conditions (anoxic compartment). Moreover, the organisms used for the phosphorus uptake (Polyphosphate Accumulating Organisms) are more efficient under anoxic conditons. These microorganisms accumulate large amounts of phosphates in their cells and are setttled in the secondary clarifier or removed as waste of activated sludge (WAS). The yield of PAOs (Polyphosphate Accumulating Organisms) is reduced between 70-80% under aerobic conditions. Even though the phosphorus can be removed upstream of the aeration tank by chemical precipitation (adding metal ions such as: calcium, aluminum or iron), the biological phophorus removal is more economic due to the saving of chemicals.